Coulomb's Law

The magnitude of the electrostatic force between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.

If two point charges $q_{1}$, $q_{2}$ are separated by a distance r in vacuum, the magnitude of the force (F) between them is given by
\[\large F=K\frac{q_{1}q_{2}}{r^{2}}\] 
where K is the proportionality constant. In SI System $\large K=\frac{1}{4\pi \epsilon _{0}}$ and $\epsilon _{0}$ is the permittivity in free space  $\epsilon _{0}=8.854 \times 10^{-12} \ C^{2}\ N^{-1}\ m^{-2}$

If  $\epsilon _{r}$ be the permittivity of any medium then  $K=\frac{\epsilon _{r}}{\epsilon _{0}}$ where K is dielectric constant of the medium.

Coulomb force is a vector quantity. If position vector of  $q_{1}$ is $\vec{r_{1}}$ and  $q_{2}$ is $\vec{r_{2}}$ then relative position vector of $q_{1}$  with respect to  $q_{2}$ is  $\vec{r_{12}}=\vec{r_{1}} -\vec{r_{2}}$ then the coulomb force on  $q_{1}$ by  $q_{2}$ will be  
\[\vec{F_{12}}=\frac{1}{4\pi \epsilon _{0}}\frac{q_{1}q_{2}}{\left |\vec{r_{12}} \right |^{2}}\hat{r_{12}}\]

And relative position vector of $q_{2}$  with respect to  $q_{1}$ is  $\vec{r_{21}}=\vec{r_{2}} -\vec{r_{1}}$ then the coulomb force on  $q_{2}$ by  $q_{1}$ will be  
\[\vec{F_{21}}=\frac{1}{4\pi \epsilon _{0}}\frac{q_{1}q_{2}}{\left |\vec{r_{21}} \right |^{2}}\hat{r_{21}}\]


Coulomb Force



Remember $[\vec{F_{12}}$ and $[\vec{F_{21}}$ are equal in magnitude but opposite in direction



Coulomb's Force due to Multiple Charges:

Coulomb's Force due to Multiple Charges


Forces on $q_{1}$ charge are $\vec{F_{12}}$, $\vec{F_{13}}$ and $\vec{F_{14}}$ therefore the resultant charge $\vec{F}= \vec{F_{12}}+\vec{F_{13}}+\vec{F_{14}}$ 

 \[\therefore \vec{F}= \frac{1}{4\pi \epsilon _{0}}\frac{q_{1}q_{2}}{\left | r_{12} \right |^{2}}\hat{r_{12}}+\frac{1}{4\pi \epsilon _{0}}\frac{q_{1}q_{3}}{\left | r_{13} \right |^{2}}\hat{r_{13}}+\frac{1}{4\pi \epsilon _{0}}\frac{q_{1}q_{4}}{\left | r_{14} \right |^{2}}\hat{r_{14}}\]


For n number of charges 
 \[\vec{F}= \frac{1}{4\pi \epsilon _{0}}\sum_{j=2}^{n}\frac{q_{1}q_{j}}{\left | r_{1j} \right |^{2}}\hat{r_{1j}}\]